Relational Magnitudes

Relational Magnitudes are invariant vectorial quantities that conserve their value and form under transformations of translation and rotation.

I. Definitions I (Relational Magnitudes)

The relational position ($\mathbf{r}_i$), relational velocity ($\mathbf{v}_i$), and relational acceleration ($\mathbf{a}_i$) of a particle $i$ with respect to an Auxiliary Reference Frame, are given by:

$\mathbf{r}_i \doteq \vec{r}_i$
$\mathbf{v}_i \doteq \dfrac{d(\vec{r}_i)}{dt} = \vec{v}_i$
$\mathbf{a}_i \doteq \dfrac{d^2(\vec{r}_i)}{dt^2} = \vec{a}_i$

Where $\vec{r}_i$, $\vec{v}_i$ and $\vec{a}_i$ are the ordinary vectorial position, velocity, and acceleration of the particle $i$ with respect to the Auxiliary Reference Frame.

Note

The Relational (Vectorial) Magnitudes are always the same as the Ordinary (Vectorial) Magnitudes in the Auxiliary Reference Frame.


II. Definitions II (Relational Magnitudes)

The relational position ($\mathbf{r}_i$), relational velocity ($\mathbf{v}_i$), and relational acceleration ($\mathbf{a}_i$) of a particle $i$ with respect to any Reference Frame $S$, are given by:

$\mathbf{r}_i \doteq \vec{r}_i - \vec{R}$
$\mathbf{v}_i \doteq (\vec{v}_i - \vec{V}) - \vec{\omega} \times (\vec{r}_i - \vec{R})$
$\mathbf{a}_i \doteq (\vec{a}_i - \vec{A}) - 2\vec{\omega} \times (\vec{v}_i - \vec{V}) + \vec{\omega} \times [\ \vec{\omega} \times (\vec{r}_i - \vec{R})\ ] - \vec{\alpha} \times (\vec{r}_i - \vec{R})$

Where:


III. Transformations (Invarianza$\cdot$Relations)

The transformations of relational position, relational velocity and relational acceleration of a particle $i$ between a Reference Frame $S$ and another Reference Frame $S'$, are given by:

$\mathbf{r}_i \doteq (\vec{r}_i - \vec{R}) = \mathbf{r}'_i$
$\mathbf{r}'_i \doteq (\vec{r}'_i - \vec{R}') = \mathbf{r}_i$
$\mathbf{v}_i \doteq (\vec{v}_i - \vec{V}) - \vec{\omega} \times (\vec{r}_i - \vec{R}) = \mathbf{v}'_i$
$\mathbf{v}'_i \doteq (\vec{v}'_i - \vec{V}') - \vec{\omega}' \times (\vec{r}'_i - \vec{R}') = \mathbf{v}_i$
$\mathbf{a}_i \doteq (\vec{a}_i - \vec{A}) - 2\vec{\omega} \times (\vec{v}_i - \vec{V}) + \vec{\omega} \times [\ \vec{\omega} \times (\vec{r}_i - \vec{R})\ ] - \vec{\alpha} \times (\vec{r}_i - \vec{R}) = \mathbf{a}'_i$
$\mathbf{a}'_i \doteq (\vec{a}'_i - \vec{A}') - 2\vec{\omega}' \times (\vec{v}'_i - \vec{V}') + \vec{\omega}' \times [\ \vec{\omega}' \times (\vec{r}'_i - \vec{R}')\ ] - \vec{\alpha}' \times (\vec{r}'_i - \vec{R}') = \mathbf{a}_i$

IV. Bibliography

  1. A. Blatter, A Reformulation of Classical Mechanics (2015). [PDF]
  2. A. Tobla, A Reformulation of Classical Mechanics (2024). [PDF]